A nonsmooth Newton method for solving the generalized complementarity problem
نویسندگان
چکیده
Abstract In this paper, we present a new nonsmooth Newton-type algorithm for solving the generalized complementarity problem based on its reformulation as system of nonlinear equations using one-parametric family functions. We demonstrate, under suitable hypotheses, that converges locally and q -quadratically. addition, show numerical experiments allow us to see good performance proposed algorithm.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA regularized smoothing Newton method for solving the symmetric cone complementarity problem
The symmetric cone complementarity problem (denoted by SCCP) is a class of equilibrium optimization problems, and it contains the standard linear/nonlinear complementarity problem (LCP/NCP), the second-order cone complementarity problem (SOCCP) and the semidefinite complementarity problem (SDCP) as special cases. In this paper, we present a regularized smoothing Newton algorithm for SCCP by mak...
متن کاملA Regularization Newton Method for Solving Nonlinear Complementarity Problems
In this paper we construct a regularization Newton method for solving the nonlinear complementarity problem (NCP(F)) and analyze its convergence properties under the assumption that F is a P0-function. We prove that every accumulation point of the sequence of iterates is a solution of NCP(F) and that the sequence of iterates is bounded if the solution set of NCP(F) is nonempty and bounded. More...
متن کاملA Damped Guass-Newton Method for the Generalized Linear Complementarity Problem
In this paper, we consider the generalized linear complementarity problem (GLCP) over an affine subspace. To this end, we first reformulate the GLCP as a system of nonsmooth equation via the Fischer function. Based on this reformulation, the famous damped Gauss-Newton (DGN) algorithm is employed for obtaining its solution, and we show that the DGN algorithm is quadratically convergent without n...
متن کاملA semismooth Newton method for tensor eigenvalue complementarity problem
In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2023
ISSN: ['1017-1398', '1572-9265']
DOI: https://doi.org/10.1007/s11075-023-01581-2